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1. Introduction 

Fatigue is a pervasive problem among drivers, estimated to have contributed to between  
35% and 40% of all accidents and costing in excess of $375 billion annually worldwide (Fletcher 
et al. 2005, Treat et al. 1977). To reduce these effects, many systems have been designed to 
detect driver fatigue before it affects driver performance. Typically, these systems have relied on 
vehicle-mounted sensors to monitor driver behaviors associated with fatigue, such as posture or 
eye-blinking characteristics (Perez et al. 2001, Popieul et al. 2003, Smith et al. 2000). However, 
several researchers have argued that monitoring the neural correlates of fatigue using 
electroencephalography (EEG) may provide a more reliable estimate of driver fatigue (Lal and 
Craig 2002, Okogbaa et al. 1994). An advantage of this approach is that it would detect signals 
that are ostensibly more directly related to the physiological effects of fatigue rather than 
behaviors that are only circumstantially related to fatigue.  

The findings have led to the development of several classification algorithms designed to detect 
the onset of fatigue in drivers from neural signals alone. These algorithms employ a wide variety 
of classification approaches to detect the onset of fatigue, ranging from Bayesian inference to 
neural networks (Peiris et al. 2011, Sandberg et al. 2011, Stikic et al. 2011, Yang et al. 2012, 
Zhao et al. 2011). The success of these systems suggests a fairly robust relationship between 
neural signals and driver fatigue. However, the predictions of these classification algorithms 
typically involve computationally intensive processing steps, limiting their application to largely 
offline analysis. Thus, these algorithms are not well situated to be embedded in a real-time 
system for fatigue detection.  

In addition, these classification methods typically do not attempt to make the connection between 
the levels of fatigue they detect and their influence on behavior. In a line of recent work, Lin and 
colleagues have demonstrated a strong linear relationship between EEG-based signals and 
fluctuations in driver performance associated with fatigue (Chuang et al. 2012, Lin et al. 2005a, 
2005b, Lin et al. 2006, Makeig and Jung 1995). This relationship was demonstrated using a 
variety of behaviors and processing techniques, one of the most intriguing of which was based 
upon a strong linear correlation found between power-spectral estimates and vehicle lane 
deviation. Using only basic signal processing and linear regression, the researchers developed an 
EEG-based driver performance estimation algorithm that yielded accurate predictions with 
relatively minimal processing (Lin et al. 2005a). 

As argued by the authors, the simplicity and accuracy of their approach make this model 
attractive for translation to a real-time system for estimating driver performance. Because the 
model makes few a priori assumptions about the connection between brain signals and driver 
performance, it is possible that the model is not necessarily sensitive to fatigue but rather adapts 
to the subject’s specific patterns of behavior and neural activity. In this way, it is possible that 
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this technique may extend beyond the context of driving or fatigue to be a generalizable 
approach to predict changes in performance from brain behavior. Additionally, it is possible that 
the method is capable of generalizing across a broader array of drivers and to more sensitive 
measures of driving performance. However, this method has been evaluated against only a 
simplistic driving model in which vehicle movement and control were highly constrained, and all 
drivers exhibited significant behavioral changes due to drowsiness. To assess whether this 
approach can generalize to real-world systems of this approach, it is important to first establish 
how well it generalizes across a broader sample of driver/driving behavior. 

Another challenge of transitioning EEG-based driver prediction technologies from laboratory 
simulations to real-world driving is that changes in task dynamics (such as those associated with 
more natural driving conditions) can have significant effects on the neural activity associated 
with fatigue and task performance (Desmond and Mathews 1997, 2002, Pattyn et al. 2008). As a 
result, the diverse physiological effects of drowsiness and the unpredictable effects of more 
naturalistic tasks raise concern of whether a simple linear model can adequately represent the 
relationship between neural signals and driving performance. As a result, more naturalistic 
driving tasks may require more sophisticated algorithms capable of distinguishing relevant 
signals amidst noisy input. One such approach comes from the field of machine learning, where 
kernel-based methods, such as support vector machine (SVM) algorithms, have been 
successfully employed in fatigue detection systems and have been shown to provide more robust 
performance despite noisy input features (Shen et al. 2007, Shen et al. 2008). Support vector 
regression (SVR), a variant of SVMs, offers similar advantages as SVMs and can be trained to 
directly estimate driver performance similar to the method described in Lin et al. (2005a) to 
provide a higher-resolution estimate of driver fatigue than previous SVM-based classifiers 
(Drucker et al. 1997). 

To evaluate the generalization of linear models for driver performance estimation across 
individuals and potential translation to more realistic driving, we adapted an established linear 
regression method as well as SVR-based approaches to estimate driver performance during a 
simulated driving task in which subjects must rigorously control the speed and heading of a 
vehicle with realistic dynamics. Subjects completed 45 min of continuous driving in which they 
were required to maintain vehicle speed and heading, and react to intermittent lateral 
perturbations to the vehicle. Models were trained to predict driver performance from the 
simultaneously recorded EEG data. All algorithms yielded low but significant levels of 
correlation with actual driving performance more than 70% of the time, suggesting that this 
approach can capture information related to fluctuations of driver performance in more complex 
driving tasks but may be improved by a more stable metric of performance than lateral deviation 
of the vehicle.
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2. Experimental Setup 

2.1 Subjects 

Eleven subjects (20 to 40 years old) participated in a simulated highway driving experiment. 
Each subject was briefed on the experimental equipment and procedures, and signed an informed 
consent form. The voluntary, fully informed consent of the persons used in this research was 
obtained as required by Title 32 Part 219 of the Code of Federal Regulations (2013) and Army 
Regulations 70–25 (1990) and approved as project No. ARL 10-051. The investigators adhered 
to the policies for the protection of human subjects as prescribed in Army Regulation 70–25 
(1990). No constraints were placed on the subjects related to previous night’s sleep or diet, nor 
were subjects required to complete the experiment at a specific time of day. 

2.2 Driving Simulation 

Subjects completed 2 separate driving sessions: an acclimation session (15 min) and an 
experimental session (45 min). Before each session, subjects provided an estimate of their 
fatigue level via the Karolinska Sleepiness Scale (Akerstedt and Gillberg 1990). Additionally, 
subjects were asked to verbally report their fatigue score on this scale every 15 min during the 
experimental session without interruption of driving. 

Subjects drove down a straight, infinitely long highway (Fig. 1A) and were instructed to keep 
their vehicle as close to the center of the right-hand lane as possible. Throughout the session, 
after subjects had maintained the vehicle within the appropriate lane for 8–10 s, a lateral 
perturbation was applied to the vehicle, causing it to begin to veer off course. The strength of the 
perturbation increased until the driver made a corrective steering adjustment (defined as a 
steering wheel deflection of 4° in the opposite direction of the perturbation) at which point the 
perturbation ceased, allowing the subject to return the vehicle to the center of the driving lane. 
The perturbation would ramp down automatically after approximately 3 s if no correction was 
made; however, the driver was still required to correct the vehicle’s heading and position. If the 
subject did not perform a corrective steering adjustment, the vehicle would continue to veer out 
of the lane and off the road until it was 21.9 m outside of the lane. At this point, the driver would 
be alerted to regain control of the vehicle via an auditory cue. 

In addition to maintaining control of the vehicle’s direction, drivers also maintained appropriate 
speed during the testing session via accelerator and brake pedals. Subjects were instructed to 
obey posted speed limit signs, which appeared on the right-hand side of the road during the 
driving session. The speed limit was 45 mph for most of the session; however, at 3 different 
points during the 45-min driving session, the posted speed limit was reduced to 25 mph. 
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Fig. 1   Driving simulation and processing and regression for driver performance 
prediction. A) Driving simulator apparatus. B) Calculation of lane deviation 
for driver error quantification. C) Processing steps of 64-channel EEG data 
for regression models and diagram of “Modeling and Estimation of Driver 
Error” step of Fig. 1C for the PC-based and SVR-based model. 
Eigenvectors and model coefficients were calculated from data in the 
training cross-validation (CV) blocks and applied to data from the testing 
block.  

2.3 Data Collection and Analysis 

Vehicle position and EEG were collected simultaneously throughout the experiment. Eye 
position was also monitored but not analyzed here. Specific event markers were embedded 
within each data structure and used to align the data in time and remove any drift in the time 
series of each data stream.
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2.3.1 Vehicle Status and Performance Metrics 

Vehicle status (position and dynamics) was monitored throughout each session, sampled at  
90 Hz for subjects 1–7 and at 100 Hz for subjects 8–11. To estimate driver performance, the 
vehicle’s lateral deviation was calculated for the entire session as the difference between the 
center of the vehicle and the center of the cruising lane (Fig. 1B). To account for the tendencies 
of some subjects to consistently position the vehicle to the right or left of the center of the lane, 
the median of their offset was subtracted. Lane deviation was then calculated as the absolute 
value of the lateral deviation throughout the driving session, then smoothed using a 90-s moving 
average filter with a 2-s step size as fluctuations in fatigue and alertness tend to last between 1 
and 2 min (Makeig and Jung 1995). This smoothed measure represents the driver’s average 
ability to maintain control of the vehicle, and thus the smoothed estimates of lane deviation act 
as our measure of driver error.  

2.3.2 Electroencephalography 

EEG signals were collected using a 64-channel Biosemi EEG system, sampled at 2048 Hz and 
down-sampled to 256 Hz off-line. The power spectral density (PSD) estimates for each channel 
were calculated using a 750-point Hanning window with a 250-point overlap. Each channel and 
frequency power estimate was then smoothed with the same 90-s moving average filter used to 
smooth the lane deviation data. Effects of fatigue have typically been shown to affect PSD 
estimates as low as the theta band (4–8 Hz). Thus, to reduce the influence of the large power 
fluctuations inherent to the EEG signal below the theta range, we used a frequency range 
between 5 and 50 Hz for subsequent analyses. As described in Lin et al. (2005a), correlation 
between PSD estimates and driver error were often strongest for channels Cz and Pz, and as 
such, these 2 channels were selected for subsequent processing. 

3. Performance Prediction 

3.1 Cross-Validation Preparation 

To allow driving behavior to stabilize, we removed the first 100 s of smoothed driving data (10 s 
to move to the center of the cruising lane, plus 90 s due to smoothing). Following this, the 
aligned EEG and vehicle data from the experimental session were split into 10 equal blocks to 
train and test each prediction approach. Ten-fold cross-validation (CV) was conducted such that 
9 blocks were used to train the prediction algorithm, and the remaining block was used to assess 
prediction performance. To eliminate overlapping data between training and testing sets, 90 s of 
the training data that abutted the testing data was removed prior to each CV block. 
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3.2 PC-Based Regression 

Principal component analysis (PCA) was performed on the combined PSD estimates of both Cz 
and Pz from the training data. Using these eigenvectors, we projected both training and testing 
PSD estimates into the component space, and only the top 50 principal components (PCs) based 
on their eigenvalues were reserved to reduce the dimensionality of the feature space. 

The projected PSD data from the training blocks were used to calculate the coefficients of a  
51-parameter (50 component vectors plus a column of ones to account for bias/offset) linear 
regression model of lane deviation. These regression coefficients were then applied to the 
projected PSD estimates of the testing block to generate a prediction of driver error over this 
period (Fig. 2). These predictions were compared to the measured driver performance for each 
epoch to characterize the predictive accuracy of the approach. This was repeated separately for 
each CV block, providing 10 unique estimates of model performance for each subject. 

 

Fig. 2   Driver error values from 6 representative subjects. Some subjects maintained consistent control 
around a baseline offset throughout the 45-min drive (drivers A, D, F) while others exhibited 
periods of increased variability (drivers B, C, E). 

3.3 Support Vector Regression 

SVM algorithms, a form of machine learning algorithm, are commonly used in EEG-based 
fatigue detection because they offer additional optimization criteria that can yield more robust 
performance in stochastic systems. SVR is an adaptation of an SVM, which approximates 
functions used for direct estimation of a parameter (Drucker et al. 1997). In this study, the 
LIBSVM library was used to develop the SVR model and generate the predictions of driving 
behavior (Chang and Lin 2011). A linear kernel function was used to provide another means of 
evaluating the potential of using linear regression to predict driver performance. Recent work has 
shown encouraging results classifying fatigue onset using a radial basis function (RBF) kernel in 
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SVM-based fatigue detection (Shen et al. 2007, 2008). Thus, we trained and tested an additional 
SVR-based model using a nonlinear RBF kernel to assess whether more complex driving 
scenarios instigate a more complex relationship between PSD estimates and driving 
performance. As shown in Fig. 2, feature inputs to each SVR were treated the same as those of 
the PC-based regression up to the point of PCA analysis. Thus, the smoothed PSD estimates for 
Cz and Pz channels were combined to generate driving performance predictions using the 2 
SVR-based approaches.  

3.4 Statistical Analysis 

To compare algorithm performance between models, we calculated Pearson’s correlation 
coefficients between predicted and actual driver error within each CV block, as well as the bias-
corrected root mean squared error (RMSE) of the prediction for each CV block. The PC- and SVR-
based approaches were compared using a paired Wilcoxon sign rank test of model performance 
metrics, unless otherwise stated. P-values at or below 0.05 constituted the threshold of significance. 

4. Results 

4.1 Driver Performance 

During the driving session, drivers maintained the appropriate speed indicated by the posted 
speed limit signs within 2–3 mph. Most of the session was spent maintaining a speed around 
45 mph, and most drivers were quick to adjust when the speed limit dropped briefly to 25 mph 
and rose back to 45 mph. Driver error did not significantly vary between periods of fast and slow 
driving. As a result, driver error values during the entire driving session were used for regression 
and estimation analysis. 

Driving performance varied greatly between subjects; some subjects maintained a high level of 
driving performance, whereas others exhibited periods of large or fluctuating performance. This 
difference is illustrated in Fig. 2, in which 3 subjects (drivers A, D, F) maintained relatively 
consistent vigilant driving performance, while other subjects exhibited predominantly vigilant 
(low error) driving but with a period of poor performance near the end of the session (drivers B, 
E), and still others produced large driving errors throughout the session (driver C). Such broad 
discrepancies were observed across all subjects as represented by the data in Table 1, which 
summarizes the maximum and standard deviation of the smoothed driver error across the entire 
experiment for all subjects. For instance, smoothed driver error in 3 of the 11 drivers did not 
exceed 0.5 m, whereas 3 other drivers produced average driver error values of 1.5 m over the  
90-s window. Additionally, in some cases, large fluctuations in driver error were attributable to 
isolated periods of very poor driving, while some drivers produced generally more variable 
driver error values across the entire experiment. Thus, the driver population sampled here 
represents a wide range of driving behavior.
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Table 1   Maximum and the standard deviation of the smoothed driver error across the entire driving session 
for each subject.  

Meas. A 
(m) 

B 
(m) 

C 
(m) 

D 
(m) 

E 
(m) 

F 
(m) 

G 
(m) 

H 
(m) 

I 
(m) 

J 
(m) 

L 
(m) Average 

Median 0.28 0.37 0.24 0.68 0.23 0.26 0.24 0.24 0.36 0.35 0.21 0.31 (±0.1) 
Max. 0.61 1.89 0.33 2.45 0.42 0.56 0.35 1.46 0.66 0.85 0.45 0.91 (±0.7) 

St. Dev. 0.08 0.35 0.03 0.46 0.07 0.07 0.04 0.26 0.11 0.16 0.05 0.15 (±0.2) 

4.2 Correlation of Driver Error and EEG 

The correlation between driver error and PSD estimates across all 64 EEG channels also varied 
widely. Consistent with previous findings, the highest correlation values were typically found 
between 5 and 15 Hz; however, some subjects also had an increase in R2 at higher frequencies  
(25+ Hz) (Lin et al. 2005a). Also consistent with these earlier findings, channels Cz and Pz 
typically yielded among the highest average correlation; thus, these 2 channels were selected for 
subsequent regression analysis presented here for all subjects. 

4.3 PC-Based Prediction Accuracy 

Prediction accuracy of lane deviation for the PC-based model varied considerably between 
drivers and between CV blocks within a single driver. Figure 3 illustrates the predicted and 
actual driver error for 2 representative subjects across all 10 CVs represented. Model 
performance for driver A, who generally produced consistently good driving behavior, was 
reasonably accurate for most blocks, while in others, model performance was poorer. For the less 
consistent driver B, model errors were very large for all blocks, and model correlation 
performance varied between blocks. 

 
Fig. 3   Prediction of driver error from the PC-based algorithm for 2 subjects. Actual (black 

lines) and estimated (blue lines) values of driver error for 2 subjects. Vertical red lines 
delineate CV blocks. 
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The average coefficient of determination was R2 = 0.23 (±0.004), but the correlation coefficient 
between predicted and actual driver error across all subjects and blocks was only R = 0.031, 
indicating that large negative correlations were also common. Table 2 summarizes the average 
R2 values, explaining the variance accounted for by the model between the predicted and actual 
driver error for the PC-based model across all blocks for each subject. In general, average R2 

values were similar between all subjects, ranging between 0.16 and 0.31. While these values are 
relatively low, across all subjects and all CV blocks, 9 of the 11 subjects tested exhibited at least 
one block with an R2 greater than 0.5. These are encouraging results given the more realistic 
driving simulation and ecologically valid subject pool to which the simple linear regression 
algorithm was applied. 

Table 2   Average squared correlation coefficient and corrected MSE of predicted 
driver error across cross-validation blocks for each subject for the 3 
driver error models 

Subject 
PCA SVR Linear SVR RBF 

RMSE 
(m) 

R2 

(m) 
RMSE 

(m) 
R2 

(m) 
RMSE 

(m) 
R2 

(m) 
A 0.01 0.21 0.01 0.24 0.02 0.19 
B 0.22 0.23 0.14 0.21 0.22 0.23 
C <0.0 0.3 <0.0 0 <0.0 <0.0 
D 0.37 0.16 0.15 0.2 0.18 0.28 
E 0.01 0.2 <0.0 0.23 <0.0 0.37 
F 0.01 0.29 0.01 0.33 0.01 0.29 
G 0.01 0.27 <0.0 0.22 <0.0 0.29 
H 0.1 0.17 0.06 0.37 0.05 0.32 
J 0.02 0.21 0.02 0.32 0.03 0.25 
K 0.07 0.31 0.01 0.33 0.03 0.34 
L 0 0.18 <0.0 0.18 <0.0 0.36 

 
Mean 0.07 0.23 0.04 0.24 0.05 0.27 

SD 0.12 0.05 0.06 0.1 0.08 0.1 
Note: PCA = principal component analysis; SVR = support vector regression; RBF = radial basis 
function; and RMSE = root mean squared error. 
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Prediction errors varied widely between subjects and CV blocks. Table 2 also summarizes the 
average RMSE of the predicted driver error across all blocks for each subject for the PC-based 
model. In general, the algorithm produced smaller errors for subjects who exhibited more stable 
driving throughout the session (low maximum and standard deviation of driver error). This is 
particularly evident when compared to the errors produced for subject 3 who performed 
consistently well throughout the session and those for subject 4 who exhibited relatively large 
and more variable driving behavior.  

A significant correlation was also found between the maximum and standard deviation of the 
driver error of the training data and RMSE of the estimates of the testing data (R2 = 0.38 and 
0.30, respectively, p < 0.05 for both). This correlation suggests that the PC-based model 
predictions have trouble matching the larger fluctuations in driving performance, potentially 
because of relative infrequency of this behavior in the training sets. Interestingly, no correlation 
was found between these characteristics of the testing data and the R2 value of the prediction. 

4.4 SVR-Based Prediction Accuracy 

4.4.1 Linear SVR 

Like the PC-based model, prediction accuracy of the SVR-based linear model varied 
considerably between drivers and between CV blocks within a driver. Figure 4 illustrates the 
predicted and actual driver error with all 10 CV blocks for the same subjects depicted in Fig. 3. 
The general trends in performance of the linear SVR-based model were very similar to those of 
the PC-based model in that prediction accuracy varied between blocks for both drivers, with 
prediction errors being consistently large for the more variable driving behavior. 

 

Fig. 4   Estimation of driver error from the SVR-based algorithm for 2 subjects. Average 
actual (black lines) and SVR-based prediction (blue lines) lane deviations for the same 
subjects shown in Fig. 3. Vertical red lines delineate CV blocks. 
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This performance was consistent with the results of correlation analysis which revealed that 
average R2 values ranging between less than 0.01 and 0.37 across subjects with a population 
average of 0.24 (±0.007). However, like the PC-based model, the average R value was near zero  
(–0.01). Table 2 summarizes the average of the R2 for the linear SVR-based predictions of driver 
error across all blocks for each subject. These values are slightly larger than those of the PC-
based model, with the exception of subject 3, for whom the SVR-based model could not fit a 
line, and thus predicted only a flat line for all 10 CV blocks. Nonetheless, for this approach 
significant prediction correlations were found for 80 of 110 instances (73%).  

Like the correlation coefficients, RMSE values varied between subjects and blocks. Table 2 also 
summarizes the average RMSE of the predicted driver error across all blocks for each subject for 
the linear SVR-based model and shows highly subject-dependent prediction errors. A significant 
correlation was found between RMSE and the maximum and standard deviation of driver error in 
the training data (R2 = 0.42 and 0.36, respectively, with p < 0.001 for both), but this was a much 
stronger correlation than that of the PC-based model. Like the PC model, no correlation was 
found between these characteristics of the testing data and the R2 value of the prediction. This 
suggests that the predictions of the SVR-based model tended to be more accurate when 
variability of the training data is lower relative to estimates that were produced when periods of 
poor driving appeared in the training set.  

4.4.2 Nonlinear SVR 

The accuracy of the RBF-SVR model predictions again varied between subjects and often within 
each driving session. Figure 5 illustrates the predicted and actual driver error with all 10 CV 
blocks for the same subjects depicted previously. The RBF-SVR model produced flat (or nearly 
flat) line estimates of driver error. These blocks tended to be those in which there was little 
change in driver performance, such as those seen in several blocks of the top plot in Fig. 5 as 
well as in the first several blocks in the bottom plot of the figure. In other cases, the RBF model 
produced a generally straight line; however, the prediction matched the general trend of the 
actual behavior (e.g., blocks 6 and 7 of the bottom plot of Fig. 5). This suggests that the RBF-
SVR-based model may be a little more resilient to noise and variability in the EEG or driver 
performance training data, which may be responsible for the large fluctuations in estimates of the 
2 linear models. 
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Fig. 5   Estimation of LD from the RBF-SVR algorithm for 2 subjects. Average actual 

(black line) and SVR-based prediction (blue lines) lane deviations for the same 
subjects shown in Figs. 3 and 4. Shaded regions delineate CV blocks. 

Average R2 values calculated for the predictions of this model, detailed in Table 2, ranged 
between near less than 0.01 and 0.36 with an average of 0.27 (±0.01). Like the previous 2 
models, the average R value was very low (R = 0.06). The average correlation score for the  
RBF-SVM was generally higher than the linear models except for several instances in which the 
model produced nearly flat or invariant estimates of driver performance; these were accompanied 
by very low R2 values due to the frequent small fluctuations in driver error data. For example, 
the average R2 was near zero for driver A, who had very little change in behavior throughout the 
driving session (see top-left plot of Fig. 2). Thus, in those instances, the resiliency to noise of this 
model reduced average performance with respect to R2 measures. As a result, fewer total blocks 
had a significant correlation between actual and estimated driver performance (60%); however, 
the RMSE of the estimates during these blocks were lower on average relative to either linear 
approach. 

Average RMSE values for each subject are also shown in Table 2. Like the linear approaches, 
there was a significant relationship between estimation errors and the maximum and standard 
deviation of driver error during the training data (R2 = 0.27 and 0.19, respectively, both  
p < 0.05). Thus, all models explored here yield greater estimation errors when trained on poor or 
variable driving behavior. 
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4.5 Model Comparison 

A significant difference was observed between RMSE values of the PC-based model and both 
SVR-based approaches. Figure 6A presents a comparison of estimation errors between the 
models. The box plot (top) illustrates the ratios of the average estimation error for each subject 
using the PC-based model to the 2 SVR-based approaches, as well as that of the linear SVR to 
the RBF SVR. Ratios greater than 1 indicate that the numerator was greater than the 
denominator. The median ratios of the PC-based model to linear SVR and RBF SVR were  
1.15 and 1.19, respectively. A Wilcoxon test confirmed that these ratios were statistically greater 
than 1 (equivalence). Thus, on average, the PC-based model produced significantly greater 
estimation errors. The median ratio between the linear to RBF SVR was 1.00 and was not found 
to be different than 1, suggesting relatively similar average levels of estimation error. These 
results suggest that periods of driving that proved difficult for one model were also problematic 
for the others.  

Despite PC-based predictions being significantly correlated with actual driver error more often 
than the SVR-based predictions (81% for the PC-based model versus 73% and 60% for the linear 
and RBF SVRs, respectively), the R2 values themselves were not significantly different between 
models across the population. Figure 6B illustrates the comparison between R2 values for the 3 
models. The plot compares the ratio of the average R2 values for each subject between models. In 
all cases, the distributions of R2 ratios were generally centered around 1 (equivalence), and none 
of these distributions was found to be significantly different from 1 (paired Wilcoxon test), 
suggesting that the overall ability to model the fluctuations in driving performance was largely 
equal across the models. These results suggest that the basis of performance on a given block 
was likely driven by the nature of the relationship between the neural signals and driving 
performance rather than characteristics specific to the regression methodology. 
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Fig. 6   Comparison of (A) RMSE and (B) R2 
between PC- and SVR-based predictions. 
Left-hand side box plots indicate the 
ratios of average RMSE (A) and R2 (B) 
for each subject between 3 models. 

5. Discussion and Conclusions 

We have evaluated 2 approaches to using linear regression models with PSD estimates to predict 
performance in a simulated driving task. Performance of both PC- and SVR-based models varied  
between and within subjects but was generally similar between models for a given subject and 
block. Overall, the average prediction errors of the SVR-based model for each subject were 
slightly but significantly smaller than those of the PC-based algorithm, but the PC-based algorithm 
yielded significant correlations to actual behavior more often. However, the accuracy of these 
predictions fell considerably short of previous driver prediction algorithms in simpler driving tasks 
(Lin et al. 2005a). Nonetheless, the frequent significant correlations suggest that linear regression 
models of PSD estimates can provide some insight into driver performance even as the vehicle 
simulation becomes more realistic (i.e., requiring constant speed and heading control).  
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In a 2005 study, Lin et al. showed strong linear relationship between lane deviation EEG 
recordings from 2 channels in a simple driving scenario (2005a). Using a very similar PC-based 
method, as well as an alternative SVR-based approach, we were unable to produce the same 
level of correlation in a more complex driving task. This may be due to at least several factors 
associated with our translational approach. First, in the Lin et al. study, the application of the 
driving performance model was limited to only those drivers who showed multiple instances of 
drowsiness and microsleeps as validated from video recordings. This reduced their driver 
population from 16 to 5 candidate drivers who were most likely to exhibit poor driving behavior 
due solely to driver fatigue (Lin et al. 2005a). Second, in contrast to this initial study, in the 
present study drivers had to maintain continuous control of both heading and speed during the 
entire experiment, adding another element of task complexity that may have had an 
unpredictable effect on the patterns of neural activity (Desmond and Matthews 1997, Desmond 
and Matthews 2002, Pattyn et al. 2008).  

Another factor potentially contributing to lower correlations is the fact that the realistic steering 
and vehicle dynamics introduced greater variance or prolonged changes in lane deviation not 
necessarily due to a lack of attention or fatigue or without a consistent neural basis. In fact, in 
more recent work, Lin and colleagues have focused on the relationship between neural activity 
and driver reaction time rather than lane deviation (Chuang et al. 2012). Both of these factors 
may introduce potentially confounding influences into the behavioral and/or neural data. Thus, 
future developments of driver prediction technologies may entail evaluating other metrics of 
driver performance that will be more reflective of the driver state, isolated from the factors 
related to the vehicle or outside world.  

The SVR-based approaches were explored as a means to evaluate whether a more complex 
algorithm would be more robust to variability in the feature (e.g., PSD estimates) and target 
(driver error calculated from lane deviation) spaces introduced by a naturalistic driving task. 
Interestingly, while both SVR-based models yielded significantly lower prediction errors relative 
to the PC-based model, neither was better able to approximate the relationship between PSD 
estimates and behavior. However, as task conditions continue to become more complex, the 
added accuracy of the SVR-based approach may prove to be worth the added computational 
load. Further, in case of driver A, it is evident that the RBF-SVR-based approach was less likely 
to fit a model when there is relatively little change in driver performance relative to minor 
fluctuations (noise) in vehicle position. While this ostensibly hurt the performance of the model 
here, this characteristic may be advantageous as driving scenarios become more complex, 
resulting in more variability in the performance metric.
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For all 3 regression approaches, we observed very large discrepancies between the correlations 
observed during model training and testing, which is a characteristic of overfitting. It is common 
for fatigue detection systems to average power across several frequencies to focus on specific 
bands, such as theta (5–8 Hz) and alpha (8–12 Hz), given their known relationship with fatigue 
onset (for a review, see Lal and Craig 2001). This approach yields a much smaller feature space, 
which can lead to a more robust fit; however, the advantage of a high-dimensional regression 
model is the potential to provide a higher-resolution prediction of driver performance. Thus, 
compression of PSD features into broad frequency bands (or outright rejections of some) could 
sacrifice useful information regarding changes in driver performance. One possible method to 
minimize the potential for overfitting and preserve predictive resolution is to employ step-wise 
regression during model formulation, a process shown to be effective in the detection of fatigue 
from PSD estimates (Sticik et al. 2011). 

A hallmark of the EEG data processing preformed here is its relative simplicity to preserve 
computational speed in potential real-time systems. However, it is worth noting that despite the 
success of the simple algorithm employed in Lin et al. (2005a), subsequent studies from this 
group have used additional processing steps, such as fuzzy neural networks and independent 
component analysis to link driving behavior and EEG data (Chuang et al. 2012, Lin et al. 2005b, 
Lin et al. 2006). These techniques can significantly influence the effect of noise and/or artifacts 
in the neural features but are considerably more computationally and time intensive and are 
limited to post-hoc analysis and/or cannot be continually updated in real time. As algorithms and 
processers become more efficient, such techniques may prove an important modification to 
enhance the regression algorithms evaluated here. 

Characteristic of all 3 regression approaches evaluated here, performance varied between CV 
blocks, performing very well in some and poorly in others. This behavior represents a significant 
challenge to the translation of EEG-based driver performance estimation technologies, 
particularly those that rely on a linear model. It is possible that this characteristic is the result of 
significant shifts in the relationship between driving error and neural signals—specifically, 
changes in the dynamics of lane deviation, which accelerates as response times grow in this 
simulation. While averaging across 90 s would do much to make the behavior more linear, it is 
possible that this characteristic of the simulation could affect the ability of a linear model to 
approximate the dynamic process. 

Variability in model performance between blocks could also be due to changes in the neural 
signals associated with the non-stationarity of neural signals or large muscle artifacts. In this 
case, one potential strategy to correct this is to use simultaneously recorded behavioral data to 
identify shifts in behavior. This information can be used to 1) alert the system of a shift in neural 
dynamics inconsistent with the existing model, 2) determine if there is an existing model for such 
behavior to switch to, and 3) estimate the degree by which the neural activity matches that 
observed during the training of the regression model. Such capabilities may provide insight into 
whether or not the predictions are reliable. Confidence estimates have been shown to be a 



 

17 

potentially useful output of fatigue detection systems (Shen et al. 2008). However, confidence as 
an active output stream in a fatigue detection system has not been explicitly evaluated but may 
be a critical feature of a translational system given the lower signal-to-noise sure to be 
experienced outside of the laboratory. 
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